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TRANSPORT PHENOMENA IN MULTIVELOCITY, MULTITEMPERATURE GAS MIXTURES* 

V.V. STHUNINSKII and M.SH. SHAVALIYEV 

A physical analysis is given and the mathematical properties and conditions 
of applicability of the equations of hydrodynamics of multitemperature 
and multivelocity gas mixtures are indicated /l, 2/. The momentum and 
energy equations are given for the whole mixture as well as the equations 
describing the velocity and temperature separation of the mixture 
components. The system of Boltsmann equations is used to obtain and 
study the equations of entropy balance and expressions for the entropy 
density, and the flow and source of entropy in a multivelocity and multi- 
temperature mixture. Itis shown that in the linear transport equations 
the kinetic coefficients satisfy the Onsager reciprocity relations. 

The methods of determining the macroscopic equations of motion for 
gas mixtures from the system of Boltsmann equations are known. The first 
approach, based on the Chapman-Enskog method of solving Boltsmann Eqs./3/ 
leads to the Euler, Navier-Stokes, Barnett, etc. equations. A description 
of all the components of the mixture in terms of a single temperature 
and a single, mass-averaged velocity, presuppose that dueto themixing 
of the component molecules in phase space the mixture state is nearly 
equilibrium. The second approach given in /l/, describes situations 
when the mixing processes are not completed and the state of the mixture 
is far from equilibrium. The method leads to the equations of the hydro- 
dynamics of a multivelocity and multitemperature mixture. Various 
versions of the momentum equations exist for such mixtures /4-6/. 

A number of papers have appeared within the last few years dealing 
with the equations /l, 2/ in which a complete set of conservation laws 
(divergent forms) was established /7/, the equation of entropy balance 
was obtained and studied (for a binary mixture) /8/, additional terms 
were computed in the equations containing the velocity and temperature 
differences of the mixture components in higher powers /9/, a generaliza- 
tion to the case of dense gases was made /lo/ and their application to 
solving specific problems was given in /ll/. In spite of all this, a 
number of still unsolved problems remain in this area, and some of them 
are discussed below. 

1. Hydrodynamic equations. The hydrodynamic equations for the multitemperature and 
multivelocity mixture /l, 2/ corresponding to the Navier-Stokes approximation in the usual 
mixtures, can be transformed to a form suitable for physical analysis, Thus, the zero approxi- 
mation equations have the form 

&+V.(ni"*)=O (i=1,2,...,N) 

F$’ = Uij = Ui - Uj 

(1.5) 

(here and henceforth the Latin indices denote the components of the mixture, and Greek indices 
the vector and tensor components). 

In the following approximation the right-hand sides of the momentum Eq.(1.2) and energy 
Eq.(1.3) are supplemented, respectively, by the terms (1.7) and (1.8) 
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(1.12) 

(1.13) 

Here Fi,, which is the force of interaction between the i-th and j-th component of the 
mixture, contains within itself the transfer of momentum between the components due to the 
non-coincidence of the component velocities and the thermal force caused by the partial 
temperature gradients. The thermal forces vanish in the Maxwellian gas, and have opposite 
signs for the hard and soft potentials of intermolecular interaction, which is described by 
the multiplier 

(1.2! Ulj = Qij 

(1.1) 

- '/* Q$j (1.14) 

in (1.111, QV is the heat transfer between the components due to their temperature dif- 
ferences, Ftj.u,, is the work done by the interaction, pl, is its fraction which becomes the 
internal energy of the i-th component, (pll< 1, f3lt + p,i = I), piag, ql are the partial stress 
tensor and thermal flux, pI,hi are the viscosity and thermal conductivity of the pure gas of 
the i-th kind. A number of terms (- uip, ~~~~~~~~~ are omitted from the equations by virtue 
of condition (1.15). Equations (l.l)-(1.13) were derived and their coefficients calculated 
for an arbitrary interaction potential between the molecules in the first approximation, using 
the Sonin polynomials. Taking into account the further terms in the expansions written in 
terms of the Sonin polynomials does not affect the structure and physical meaning of the terms 
in (l.l)-(1.31, and merely increases the accuracy of the coefficients. 

Below we formulate some of the properties of the hydrodynamic equations obtained. 
The equations are invariant under Galilean transformations, rotations and reflections 

with respect to the origin of coordinates. 
The system of zero approximation equations is hyperbolic (the characteristic equation has 

ten different roots); therefore the associated Cauchy problem is correct. 
The system of zero approximation equations has 14 linearly independent divergent forms 

/7/. 
The zero approximation equations are irreversible (unlike the equations of the Chapman- 

Enskog method) because of the relaxation terms F#), Q#') in the momentum and energy equations. 
The equations describe flows with arbitrary ratios of the mixture component temperatures, 

and with relative velocities 
-- 

uif < max ( f2kTl/mt, I/2kTJq) (1.15) 

However, here the order of magnitude of the velocities ulf can be equal to that of the 
component velocities u,,u, and to the smaller of the thermal velocities. 

Restriction (1.15) on the quantity uij is needed in computing the moments of the collision 
integrals Iij(i# i) 

s 0 (vi) lij Vi(o), fj(“)) dvi, VI (vi) = 1 mivj, 7 (Vi - u,)‘, (i.16) 

(iv+- Ui)a (v* - U()B>, (Vi - Ui ) (Vi - U’Plj 
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occurring in the hydrodynamic equations and the distribution function f*(n) = fi'0) @t(n). 

Using the symmetry properties of the collision integrals, we can write (1.16) in the form 

Here the velocities vi, vi are first expressed in terms of the velocities of the centre 
of mass Gij = (mivi + mjvj)(w + IQ-~ and the relative velocity gij= vi - vj, and the integration 
is carried out over e and b. Further, the sum of the exponent indices in fr@)fj@) is transformed 
to the form in which the dependence on nij is separated out (see e.g. /9/) 

(Vi - IQ)’ (V.-U.)3 
-7r-+ us-@. (g* j - utj)' 

"iT +T 1, & + $T 

cij = Gij - g,j 2k tTi - Tj) 

trn, + mj) (“iT + “jT) -(4i”i + Bif9) 
Then, using condition (1.15) we expand exp I- (gij - Uij)'(~<~' + ujra)-'] in a series in Wj I 

pass in the integrand from the variables Gij,gij to ~ij, gij, and integrate with respect to the 
latter. 

Similar equations were obtained earlier in /12/ for a plasma. However, the use in their 
derivation of a number of assumptions specific for a plasma (quasineutrality, large differences 
in the masses and temperatures of the electrons and ions, the Landau collision integral, etc.) 
make it impossible to use the equations for mixtures of neutral gases. 

In some cases it may be better to describe the mixture in terms of the velocity common 
to the whole mixture and temperature, given by the relations 

(1.17) 

where Vt = ui - u = p-'spju,j is the diffusion velocity of the i-th component, and in terms of 
j 

the component velocity and temperature differences 

UI1 = "I.- ujr T,, = T1 - T, (1.18) 

The partial velocities and temperatures are expressed in terms of these quantities as 
follows: 

u~=u+V~, Ti=T++ 
1 

njT4j-x Pjvjs 
I j 

(1.19) 

Addition and pairwise subtraction of Eqs.(1.2)yields, respectively, the momentum equation 
for the whole mixture and equations for the velocity differences in the mixture components. 
Using (1.17)-(1.19) we can write them as follows: 

P(& +u.VUa)=-+-+p.B (1.20) 

(i.21) 

Pap = B Pi@ + F Pi (ViccYiR) 

The stress tensor components pi of the mixture contain, in addition to the Navier-Stokes 
stresses, the Kaman stresses and a series of Barnett terms /13/. 

Similarly we obtain, for Eqs.(l.3) .the energy equation for the mixture and for the 
component temperature differences 

(1.22) 

(1.23) 
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k$ [Vi-V ($ Z’ik) -Vj*V (G ~jk) + 

Here the terms - ~~~~,p~~,qu~~~ are denoted by repeated dots. They are not written out, 
since terms of this order were already neglected when deriving Eqs.(l.l)-(1.13). In the case 
of a binary mixture of Maxwellian molecules (1.21), (1.23) are identical with the analogous 
equations of /5/, provided that the terms - u~),~,.+Q~ are neglected in the latter. 

Assuming that the relaxation times eij and Z'{j are small compared with the characteristic 
hydrodynamic time we can show, following /5/, that to a first approximation (1.21) yields the 
relation 

for determining uij,and Tij are second-order quantities with respect to the gradients of the 
macroscopic quantities. Solving these relations for uij we can obtain expressions for the 
diffusion velocities. The termodiffusive term in the diffusion velocity is determined by the 
thermal forces in Fg and the thermodiffusive effect in the heat flux by the terms -uij and 

qi. After this Eqs.(l.20)become the Navier-Stokes equations and (1.22) transforms into the 
energy equation of a normal mixture. However, the viscosity and thermal conductivity in them 
are sums of the viscosity and thermal conductivity of the mixture components. 

2. Equations of entropy balance. Introducing the definition of specific entropy 

PS=~~isi=-kksji(Inji-~)d~i i i 

we can use standard methods /14/ to obtain the entropy balance equation of the form (J8 is 
the entropy flux and u denotes the entropy source) 

&~s=--V. (ZpiSiui + Je) +‘a ,(2.2) 
1 

J,=--,k~$(V~-"~)ji(Inji--)dv~ 
i 

u=- k~~S~ij(ji,jj)lnjidv~)O 
i j 

In the method of solving the Boltzmann equations given in /l/, it was assumed that the 
cross collision integrals 

Ill (ji, jf) - KIff (fit jf) 12.3) 

and the distribution functions were written in the form of series in terms of the Knudsen 
number K 

fi (t, r’, Vi) = /!I”’ (1 + St1 K”(P) 

jp = ni (+)“’ exp [ - mi (&ui)* ] 
(2.4) 

Using (2.3), (2.4) we can also write the quantities &,J,,o in the form of series in 
K whose first two terms are: 

J!“=-kXS(vi - ui) jp’ (ln j?’ - 1) dvi = 0 
i 
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~(0) = - k 2 2 S I‘j (fl), ff’) in fl) dvi + 0 
‘54 

a(l) = - k 2 s (D\” [Iii (ji’), ji”) + Iii (j?“, j?)] dv, - 
t 

In deriving the second and fourth relation in (2.5) we have used the conditions of unique- 
ness on ji"' and the definition of thermal fluxes /l/. 

To a first approximation in K, the entropy density is represented, by virtue of definition 
(2.1), as the sum of partial entropies which are functions of the local L?'iand nl such as they 
would be if every component were in a state of equilibrium with specific temperature T1.The 
entropy flux is determined by the partial heat fluxes. We note that, unlike in the usual 
mixtures, the entropy source in the zero approximation is different from zero by virtue of 
the velocity and temperature relaxation processes of the mixture components. This indicates 
the irreversibility of the hydrodynamic equations in the zero approximation. 

Using the integral equations for m,,(l) and definitions of the quantities Ql~,FI1,q, and 

plag /l/, we can write the expression for the entropy source in theformof the sum of products 
of fluxes and thermodynamic forces associated with them, as is the practice in the thermodyn- 
amics of irreversible processes 

~'"'+~'l'=~~Qij(~-~)+ (2.6) 

zzFij* (!&+%)uij+ ~Q*V-&-J$P‘P.B~ 
i<j 

Here Q‘j,Fij,qt,piag denote the fluxes and (Tj'- Ti'),(Ti'&j + TT'pjl)uij, VT;', - Tileiag are the 

conjugate thermodynamic forces. 
The linear laws connecting the fluxes with the forces can be derived from (1.4), (1.5), 

(1.9)-(1.13) under the condition that 1 Tt - i”, I<(T, + Tj) (the smallness of the remaining 
forces has already been assumed in deriving the hydrodynamic equations). They have the form 

Q~~=LQ~~Q~~ *BY&) 3 Fij=LFijFijfUtj + ( z 

2x LFijFik G&k f ~~~~~~~ Y& ukj 
) 

f 

k(+;i, j) 

LFijqv + + LFijqjV + 
1 2 

qi = L,,,V + + 
f 

Piap= - Lpipi +ei,fi 

(2.7) 

When the velocity and temperature differences in the components of the mixture are small, 
doubts may arise concerning the validity of the multivelocity and multitemperature description 
of the mixture. However, in the Chapman-Enskog method leading to a one-velocity and one- 
temperature description uij is the rate of diffusion, --Kc, (co is the speed of sound in the 
mixture) and the temperature difference -t+j'- K'c,,~ (see (1.19)). Therefore we have assumed 
above that max (utr,ujr)> 1 u ijl s Kc, and (Ti+Tj)BI Ti- TjI>K*(T<+ Tj). 

When the transport phenomena have a vector character (interaction between the components 
and thermal conductivity), we have crossover effects and the corresponding coefficients 
satisfy the Onsager-Casimir reciprocity relations 

I 
LFi>qj = - Lqj~jplj f2.8) 

(since the force VT1-l is an even function and T-'u~~ is an odd function of tile molecular 
velocities). Unlike the binary mixtures /8/, in multicomponent mixtures the force F,, depends 
not only on II,,, but also on uik and ujL (k# i,]), which are conjugated with F& and Fjk. The 
corresponding coefficients are connected by the Onsager reciprocity relations 

mi’mjmkP#khiaijaik 

k’ (mi + mj)‘(mi + mk)’ 
(2.9) 

LFijFkj = LPkjFij 
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where ~~~~~~~ LFijFkj 

The remaining 

are obtained from Lltjq,, LFij~,k by mutual interchange of the indices i,]. 

coefficients of (2.7) are determined by the relations 

LFijFij = L$ijFij + L$ijPij = (2.10) 

In order for the entropy source to be always positive, the matrix of the kinetic coef- 
ficients L,(n, m = Q&Fij,qi,pi) must satisfy certain conditions /14/ 

The non-negativity of LFijFtj follows from the inequality 

*=2 (y&)“[$(&)“+ $&$J’]<i 

(2.11) 

(2.12) 

which holds by virtue of the condition njPij4 niPi (a corollary of the initial assumption (2.3)) 
and of the condition aij (Gij('*l))-l < 1. The non-negativity of the remaining components LlWl 
clearly follows from (2.10). When inequality (2.11) holds, the second condition of (2.11) also 
holds. 

The mutuality relations (2.8), (2.9) and the inequalities (2.11) are established using 
the transport coefficients calculated in the first-order approximation in terms of the Sonin 
polynomials. However, it can be shown that they also remain valid for the exact expressions 
for the transport coefficients. 

Expression (2.6) for the entropy source was derived under the same assumptions as the 
hydrodynamic equations, i.e. for arbitrary temperature differences of the mixture components 
and under the constraint (1.15) imposed on utl. The Onsager reciprocity relations, however, 
hold only when the differences in the temperature and velocity components are small. Thus in 
order for the laws of thermodynamics of irreversible processes to hold inthe systeminquestion, 
the local equilibrium must extend outside each component. 
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